婷婷色国产偷V国产偷V小说,超碰免费人人,妺妺窝人体色www婷婷,成人在线亚洲无码

登錄/ 注冊

維視智造logo

AI工業(yè)視覺解決方案提供商引領智能視覺 推動品質(zhì)生活

全國咨詢熱線: 4000-400-860

機器視覺技術近年發(fā)展情況分析

返回列表 來源:維視智造 查看手機網(wǎng)址
掃一掃!機器視覺技術近年發(fā)展情況分析掃一掃!
瀏覽:- 發(fā)布日期:2019-03-19 15:21:18【

1、機器視覺部件發(fā)展迅速

CCD、CMOS是工業(yè)相機的核心固件,近年來越來越成熟。圖像傳感器件尺寸不斷縮小,像元數(shù)量和數(shù)據(jù)率有了很大提高,分辨率和幀率的提升,產(chǎn)品系列也越來越豐富,在增益、快門和信噪比等參數(shù)上不斷優(yōu)化,通過核心測試指標來對光源、鏡頭和相機進行綜合選擇,使得很多以前成像上的難點問題得以不斷突破。

系統(tǒng)結(jié)構(gòu)

2、圖像處理和模式識別發(fā)展迅速

圖像處理上,隨著圖像高精度的邊緣信息的提取,很多原本混合在背景噪聲中難以直接檢測的低對比度瑕疵開始得到分辨。

模式識別上,本身可以看作一個標記過程,在一定量度或觀測的基礎上,把待識模式劃分到各自的模式中去。圖像識別中運用得較多的主要是決策理論和結(jié)構(gòu)方法。決策理論方法的基礎是決策函數(shù),利用它對模式向量進行分類識別,是以定時描述為基礎的;結(jié)構(gòu)方法的核心是將物體分解成了模式或模式基元,而不同的物體結(jié)構(gòu)有不同的基元串,通過對未知物體利用給定的模式基元求出編碼邊界,得到字符串,再根據(jù)字符串判斷它的屬類。在特征生成上,很多新算法不斷出現(xiàn),包括基于小波、小波包、分形的特征,以及獨二分量分析;還有關子支持向量機,變形模板匹配,線性以及非線性分類器的設計等都在不斷延展。

3、深度學習帶來的突破

傳統(tǒng)的機器學習在特征提取上主要依靠人來分析和建立邏輯,而深度學習則通過多層感知機模擬大腦工作,構(gòu)建深度神經(jīng)網(wǎng)絡(如卷積神經(jīng)網(wǎng)絡等)來學習簡單特征、建立復雜特征、學習映射并輸出,訓練過程中所有層級都會被不斷優(yōu)化。在具體的應用上,例如自動ROI區(qū)域分割;標點定位(通過防真視覺可靈活檢測未知瑕疵);從重噪聲圖像重檢測無法描述或量化的瑕疵如橘皮瑕疵;分辨玻璃蓋板檢測中的真假瑕疵等。隨著越來越多的基于深度學習的機器視覺軟件推向市場(包括瑞士的vidi,韓國的SUALAB,香港的應科院等),深度學習給機器視覺的賦能會越來越明顯。

4、3d視覺的發(fā)展

3D視覺

3D視覺還處于起步階段,許多應用程序都在使用3D表面重構(gòu),包括導航、工業(yè)檢測、逆向工程、測繪、物體識別、測量與分級等,但精度問題限制了3D視覺在很多場景的應用,目前工程上先鋪開的應用是物流里的標準件體積測量,相信未來這塊潛力巨大。



圖形11

維視智造推薦

相關根欄目

最新資訊文章